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J.  Phys. A: Math. Gen. 21 (1988) 1471-1473. Printed in the U K  

COMMENT 

Comment on ‘Singular point analysis, resonances and 
Yoshida’s theorem’ 

A Ramanit, H Yoshidat and B GrammaticosO 
f Centre de  Physique Theorique, Ecole Polytechnique, F-91128 Palaiseau, France 
5 LPN, Universiti Paris VII,  Tour 24-14, 5” itage, F-75231 Paris Cedex, France 

Received 30 October 1987 

Abstract. We show that the paper by Steeb el a[, criticising Yoshida’s theorem, is based 
on a misunderstanding of the latter. 

In a recent publication, Steeb et a1 [ l ]  have presented criticisms of a theorem by 
Yoshida [2] which has related the existence of algebraic integrals for weighted 
homogeneous systems of ordinary differential equations (ODE) with the singular struc- 
ture of their solutions. The criticism of Steeb et al has its origins in the fact that they 
believe that Yoshida’s theorem assumes that the scaling properties determine the 
dominant singular behaviour of the system. However, such an assumption is neither 
needed nor present in the theorem. In fact, the misunderstanding of the authors 
appears clearly in the second paragraph of the article where the Kowalevski exponents, 
introduced in Yoshida’s work, are confused with the resonances, introduced in the 
PainlevC method by Ablowitz et a1 ([3], hereafter referred to as ARS).  The distinction 
is admittedly a subtle one. We have discussed the matter at length in [4]. The difference 
between the two objects makes the criticisms of Steeb et a1 unfounded and ensure the 
validity of Yoshida’s theorem. In order to make the present comment as self-contained 
as possible we present the correct formulation of Yoshida’s theorem together with an 
illustrative example and then comment briefly on the examples analysed by Steeb et al. 

We start from a system of first-order autonomous ODE 

dx,/dt  = F,(x , ,  . . . , x?,) 

t +  & - I t ,  XI + egzx,. 

(1) 

(2) 
(One basic assumption of the theorem is that the F, are rational functions and that 
the weights g ,  are rational numbers.) In this case there exist particular solutions of 
the system of the form 

which we assume invariant under a scaling transformation: 

x, = a,t-gt (3 )  
(the ‘scaling’ solutions). The constants a, are obtained from the solution of the algebraic 
equations: 

(4) F , ( a , ,  . * . , a,) = - g , a , .  
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Next we consider the variational equations around the solution (3) .  Writing 

x, = ( a , + 5 , ) t C g '  

we obtain the linearised equations 

td5 , ld t  = K,5, 
J 

where the matrix K,, is given by K,J =aF,/axJI,=,+6,g,. The eigenvalues of K are 
called the Kowalevski exponents. Now the Yoshida theorem, referred to in [ 13, states 
that for system (1) to be algebraically integrable it is necessary that all Kowalevski 
exponents be rational numbers. Moreover, each Kowalevski exponent can be associ- 
ated to the weight of a constant of motion. Note that in the theorem it is never assumed 
that all a, are non-vanishing. Some of them may indeed vanish; the minimum needed 
is that at least one a,g, # 0. Still, the Kowalevski exponents are measured away from 
the leading behaviour a,tCpI independently on the vanishing of the coefficient a,. Let 
us illustrate this with a very simple example. Consider the scale-invariant system 

d x l d t  = -x2 d y l d t  = XY + y2. (7) 

Two different singular behaviours, in the PainlevC sense, can be found ( T  = t - to) :  

with resonances (obtained using the ARS algorithm) r = -1, -2 and a second one: 

X=1/T y = a7 with a free (9) 

with resonances r = - 1 and 0. Clearly the first case corresponds to both ai non-vanishing 
while the second case of singularities occurs when a2 = 0, i.e. the coefficient of 1 / ~  in 
y vanishes. Now the ARS resonance r = 0 indicates that the coefficient a of the term 
LYT is a free constant. However, the Kowalevski exponents are not measured with the 
actual singular behaviour for the starting point but with the scaling one, i.e. 117. We 
should write 

y = T - ' ( O +  a T 2 ) .  

Therefore one finds for the Kowalevski exponents -1 and +2. The latter indicates 
that the free constant enters two orders after the scaling behaviour which happens to 
have a vanishing coefficient. The system can, of course, be completely integrated. One 
finds 

x = l / r  y = 2c.r/( 1 - cr?) 

where c is the second integration constant, which we can express in terms of x 
and y as 

c = x2y/(y + 2x). 

As Yoshida's theorem states, the Kowalevski exponent is indeed related to the weight 
of the integral, which is this case is equal to 2. One can also check that the gradient 
of the integral computed on the scaling singular solution is non-vanishing. Thus 
Yoshida's theorem is fully satisfied and one sees that the resonances d o  not coincide 
with the Kowalevski exponents [4]. Thus one should not use them indiscriminately, 
and only the Kowalevski exponents are directly related to the degree of the integrals 
of motion. 
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In the example above, the scalings of both x and y were unique. Steeb et a1 [ 11 
presented examples with one or two arbitrary scalings introduced through the proper 
bilinearities on the ODE considered. Free scalings, however, do  not change anything 
either in the approach or in its conclusions. The first system considered was 

dx/d t  = xy dyld t  = -XY dz /d t  = Z ( X  - y )  (12) 

t +  & - I t  x +  EX Y + E Y  Z + E C I Z  

which is scale invariant under the scaling 

with a free. The constants of the motion are I ,  = x + y and I 2  = xyz with respective 
weights 1 and 2+a (and non-zero gradients). Steeb e t a l  have (correctly) calculated 
the resonances as being -1,0 and 1, and have (incorrectly) deduced that Yoshida’s 
theorem does not apply here. However, the Kowalevski exponents, computed as 
defined by Yoshida [ 2 ] ,  being related to the precise scale invariance of the system, 
turn out to be -1, 1 and 2 +  a. These exponents, therefore, give precisely the order of 
the invariants. The difference between ARS resonances and Kowalevski exponents can 
be better understood when one looks at the leading singular behaviour: 

X - 7-1 y - 7-1 z - Ar2 with A free (hence the resonance 0) (13) 

considered. The dependence of z can be rewritten: 

which shows that the coefficient of the leading scaling behaviour vanishes but that the 
free constant A enters correctly at the order 2 i a  with respect to it. 

Similar conclusions can be reached for the second example of Steeb et al [ 13: 

d x l d t  = xy dy/d t  = -XY dz ld t  = -ZY dwldt  = wx (14) 

with integrals I ,  = x + y ,  I 2  = xyzw, I ,  = xz + zw. As 12,  however, has zero gradient and 
I ,  is not, in general, weighted homogeneous for the scaling ( x  + EX, y + ~ y ,  z + E ~ Z ,  

w+ E’W) introduced by Steeb et al, one should rather consider IS = xz and I s  = yw 
with respective weights 1 + a and 1 + p. A straighforward calculation shows that the 
Kowalevski exponents are -1, 1, 1 + a and 1 +/3 in perfect agreement with Yoshida’s 
theorem. 

Thus in the light of our analysis it appears that the conclusion of Steeb e ta l  is 
unfounded and results from a misunderstanding of the distinction between the 
Kowalevski exponents and the ARS resonances. 
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